Enrollment No: ____

Exam Seat No: _____

C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Mathematics-II

	Subject	Code: 4S	C02MAT1	Branch: B.S.	c. (All)		
	Semeste Instructio		Date: 09/05/2017	Time: 02:00	To 05:00	Marks: 70	
			ogrammable calculator &	any other electroni	ic instrument is	s prohibited.	
		(2) Instructions written on main answer book are strictly to be obeyed.					
		(3) Draw neat diagrams and figures (if necessary) at right places.(4) Assume suitable data if needed.					
	(4)	Assume st	ultable data li liecucu.				
Q-1	L	Attemp	t the following questions	:			(14)
	a)	a) The solution of the differential equation $(D^2 - 2D + 1)y = 0$ is					(01)
		(1)	$c_1e^x + c_2e^{-x}$		$(c_1 + c_2 x)$		
		(2)	$(c_1 + c_2 x)e^x$	(4) Non	e of these		
	b)	The part	ticular integral of $(D^2 + a)$	$(x^2)y = \sin ax$ is	 ar		(01)
		(1)	$-\frac{x}{2a}\cos ax$	(3)	$-\frac{\alpha x}{2}\cos \theta$	s ax	
			ticular integral of $(D^2 + a)$ $-\frac{x}{2a}\cos ax$ $\frac{x}{2a}\cos ax$				
	c)	When w	we put $z = \log x$ in a home	ogeneous linear dif	ferential equat	ion, the value	(01)
		of $x^2 \frac{d^2 y}{dx^2}$	<u>y</u> is				
		(1)		(3)	$\frac{d^2y}{dz^2} - \frac{d^2y}{dz^2} + \frac{d^2y}{dz^2$	dy	
			$\frac{z^2 \frac{d^2 y}{dz^2}}{z^2 \frac{d^2 y}{dz^2} - z \frac{dy}{dz}}$		$\overline{dz^2}$	dz	
		(2)	$z^2 \frac{d^2 y}{d^2 y} - z \frac{d y}{d y}$	(4)	$\frac{d^2y}{d^2}$ +	dy	
	J)	T 1 4	$dz^2 dz$		dz^2	dz	(01)
	d)	(1)	ticular integral of the difference $\frac{1}{12}e^{5x}$	(3)	$J^2 - 3D + 2)y$	$v = e^{\sigma x}$ is	(01)
		(1)	e	(3)	$\frac{1}{6}e^{5x}$	5	
		(2)	$\frac{1}{12}e^{5x}$	(4)	1		
		4	$\frac{12}{12}e^{6x}$		$\frac{1}{4}e^{2\lambda}$		
	e)	$\frac{1}{D-m}$ Q is	s equal to				(01)
		(1)	s equal to $e^{mx} \int Q dx$ $e^{-mx} \int Q e^{mx} dx$	(3)	$e^{-mx}\int Q$	$\frac{1}{2}$ dx	
		(2)	$e^{-mx}\int Q e^{mx} dx$	(3) (4)	$e^{mx}\int Qe^{-1}$	$^{-mx} dx$	
	f)		nplex conjugate of $\frac{i}{1-i}$ is				(01)
			1-1				

Page 1 || 3

((1) $-i$	(3)	$\frac{i-1}{}$		
((2) $\frac{\overline{1+i}}{1-i}$	(4)	2 None of these		
g) R	eal part of $\cosh z$ is			(01)	
((1) $\cosh x \cos y$	(3)	$\cos h x \sin y$		
((2) $\sinh x \sin y$	(4)	sinh x cos y		
h) If	If $z = \cos \theta + i \sin \theta$, then $\sin n\theta = \dots$				
((1) $\frac{z^n + z^{-n}}{\frac{z^n - z^{-n}}{2}}$	(3)	$\frac{z^n - z^{-n}}{2i}$		
	2				
($(2) \qquad \qquad \underline{z^n - z^{-n}}$	(4)	None of these		
	2			(2.4)	
	$f x + iy = \sqrt{2} + 3i$, then $x^2 + y$ is			(01)	
	(1) 7	(3)	13		
	(2) 5	(4)	$\sqrt{2} + 3$		
j) T	he real part of $(\sin x + i \cos x)^5$ is			(01)	
($(1) \qquad -\cos 5x$	(3)	$\sin 5x$		
	$(2) \qquad -\sin 5x$	(4)	$\cos 5x$		
((1) $ax^2 + by^2 + cz^2 = 1$	(3)	fyz + gzx + hxy = 1		
	(2) $ax^2 + by^2 + cz^2 = 0$				
	he equation of the enveloping cone can b			(01)	
	$S = T^2$	(3)	$T = S_1$		
	$SS_1 = T^2$	` '	None of these		
,	building curve of a right circular cylinder			(01)	
	(1) ellipse		pair of straight lines		
	(2) circle $\frac{2}{2}$	(4)	any closed curve	(01)	
	he equation $\frac{x^2}{2} - \frac{y^2}{3} = z$ represents:			(01)	
	(1) cylinder	(3)	1		
((2) hyperboloid	(4)	paraboloid		

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)		
	a)	Find the equation of cone whose vertex is (α, β, γ) and base $ax^2 + by^2 = 1, z = 0.$			
	b)	Describe and sketch the conicoid $\frac{x^2}{9} - \frac{y^2}{16} - \frac{z^2}{9} = 1.$	(05)		
	c)	Find the equation of a cylinder whose generating lines have the direction cosine (l, m, n) and which passes through the circle $x^2 + z^2 = a^2$, $y = 0$.	(04)		
Q-3		Attempt all questions	(14)		
	a)	Find the equation of the enveloping cylinder of the sphere $x^2 + y^2 + z^2 = 25$, whose generators are parallel to the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{2}$.	(05)		
	b)	Prove that the equation $2y^2 - 8yz - 4zx - 8xy + 6x - 4y - 2z + 5 = 0$	(05)		
		Page 2 3			

		represents a cone whose vertex is $\left(-\frac{7}{6}, \frac{1}{3}, \frac{5}{6}\right)$.	
	c)	Define: $\log(x + iy)$. Determine $\log(1 - i)$.	(04)
Q-4		Attempt all questions	(14)
	a)	Prove that the n^{th} root of unity are in a geometric progression. Also show that	(05)
	b)	their sum is zero. Separate real and imaginary parts of $tan(x - iy)$	(05)
	b) c)	Separate real and imaginary parts of $tan(x - iy)$. Solve: $y'' + 16y = x^4 + e^{3x} + \cos 3x$.	(03) (04)
Q-5	C)	Attempt all questions \mathbf{A}	(14)
<u>ر</u> ب	a)	Solve: $(x^2D^2 - 3xD + 4)y = x^2$, given that $y(1) = 1$ and $y'(1) = 0$.	(05)
	b)	Solve: $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 8y = x^2$.	(05)
	c)	Solve: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-3x}$.	(04)
Q-6		Attempt all questions	(14)
	a)	State and prove De-Moiver's theorem.	(05)
	b)	Prove that $\sinh^{-1}(z) = \ln(z + \sqrt{z^2 + 1})$.	(05)
	c)	Expand $\cos^5 \theta$ in a series of cosines of multiples of θ .	(04)
Q-7		Attempt all questions	(14)
	a)	Solve: $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x.$	(05)
	b)	Prove that the cones $ax^2 + by^2 + cz^2 = 0$ and $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$ are reciprocal.	(05)
	c)	Prove that $\cos 6\theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1$.	(04)
Q-8		Attempt all questions	(14)
	a)	Solve the simultaneous equations $\frac{dx}{dt} + 2y + \sin t = 0$, $\frac{dy}{dx} - 2x - \cos t = 0$ given	(05)
	• `	that $x = 0$ and $y = 1$ when $t = 0$.	(0.5)
	b)	Solve: $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$.	(05)
	c)	Identify the surface given by $9x^2 + 4y^2 - 9z^2 - 18x - 8y - 18z = 32$.	(04)

Page 3 || 3

